


## Summary

- 1. Physical processes important for islands
- 2. Speciation on islands

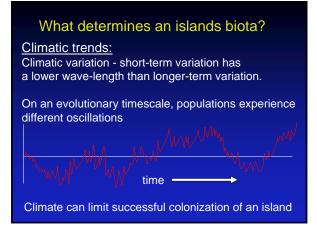
case-studies from Galapagos, Hawaii, Mauritius

- 3. Common features of island species
- 4. <u>Question:</u> Is extinction a feature of island species?

## What determines an islands biota?

## **Physical features:**




elevation area geology ocation solation origin climate

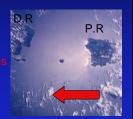
## What determines an islands biota?

<u>Climatic trends:</u> Tall islands=wetter Low islands=drier

<u>Habitat compression</u> Altitudinal zones become *compressed* on islands.

This increases the number of species that an island can support.




## What determines an islands biota?

<u>Climatic trends:</u> Ocean & wind currents can have large influence.

Mona Island, Caribbean: constant east-to-west winds

9 endemic butterfly subspecie on Mona Island.

All originate from Puerto Rico



## What determines an islands biota?

Climatic trends:

Natural disturbance re-distributes resources for new species.

Island systems are largely structured by disturbance (volcanism, tsunamis, hurricanes)

Magnitude & frequency



## Models of evolution on islands

## Anagenesis

- speciation with little or no radiation
- uncommon (or not frequently studied?)
- occurs on the smallest, most isolated islands

Eg. Juan Fernandez Islands, 600 km off Chilean coast.

67% plant spec

73 'colonisation events' can explain 69 (71%) of the



## Models of evolution on islands

## Taxon Cycles

A succession of colonisation.

- 1. Initial invasion by colonist (Spp 1)
- 2. Expansion to other habitats
- 3. Colonises as generalist
- 4. Evolves locally restricted forms
- 5. New colonist arrives (Spp 2)
- 6. Out-competes the first colonist (Spp 1 now specialist)
- 7. Spp 1 and Spp 2 become highly differentiated
- 9. Empty niches filled by new colonists (Spp 3)

#### Models of evolution on islands

## Taxon Cycles

Difficult to observe due to historical human disturbance



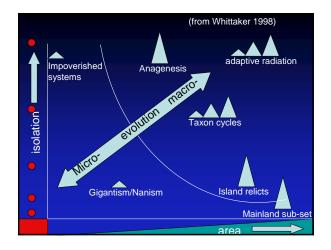
Important concept: Species move from marginal to interior habitats.

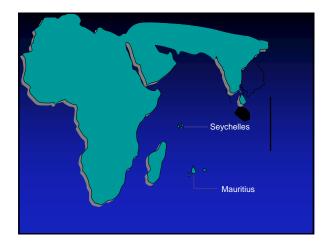
Do island communities really evolve like this?



Models of evolution on islands

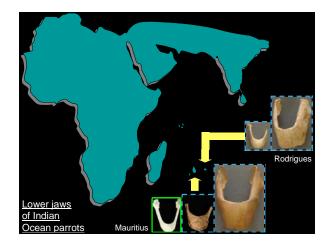
#### Adaptive radiation

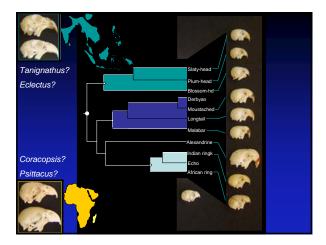

Diversification of species into vacant niche space.

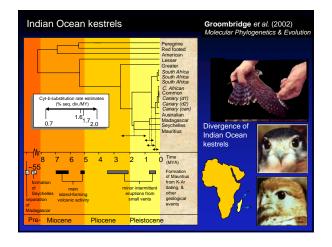

Most well known model.

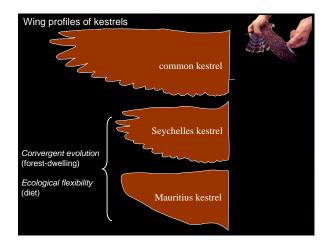
#### Hawaiian insects:

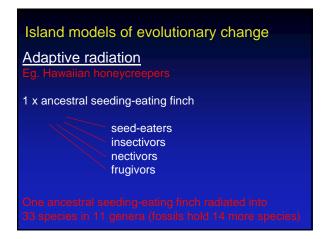
10,000 species from ~ 350 colonist species

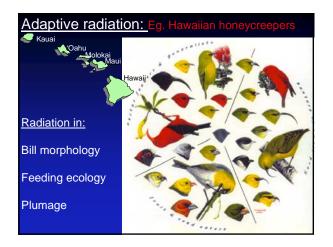

Most common on remote, high, islands on edge of a biotic groups dispersal range

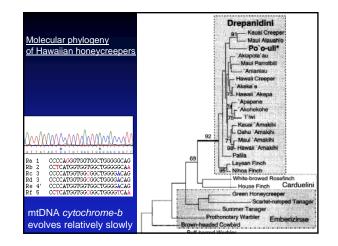




| Sequence:  | 68_Putt-F472                                                        | Clipped kingth: 68<br>Left olip: 17<br>Right olip: 84<br>Avg. qual. in olip.: 30.7 | Samples:<br>Bases:<br>Average speci<br>Average qualit        |                                               | Quality: | 0-9<br>10-19<br>20-29<br>>= 30 |
|------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|----------|--------------------------------|
|            |                                                                     |                                                                                    |                                                              |                                               |          |                                |
| B_PutrF472 | Clipped length:<br>Left clip:<br>Right clip:<br>Avg. qual. in clip: | 68<br>19<br>86<br>36.47                                                            | Samples:<br>Bases:<br>Average specing:<br>Average quality >= | 15829<br>215<br>74.0<br>10: 83, 20: 8, 30: 44 | Quality: | 0-9<br>10-19<br>20-29<br>≫ 30  |


Evolution of the Mauritius parakeet

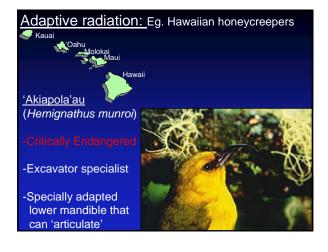


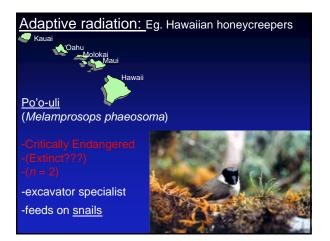





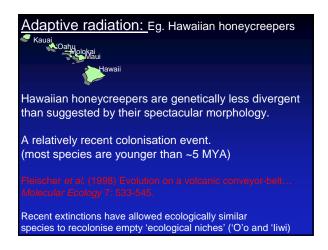


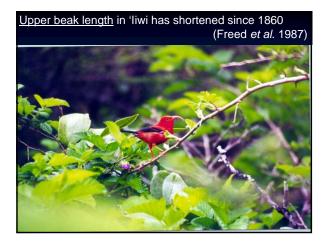










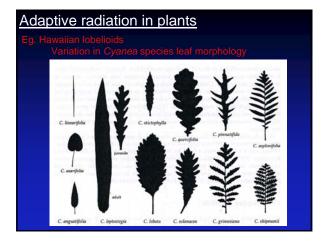


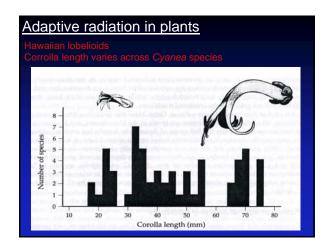


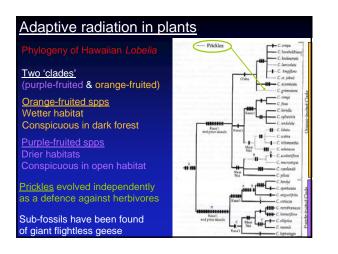


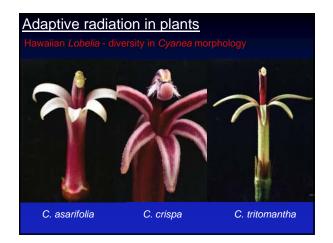

#### Adaptive radiation in plants

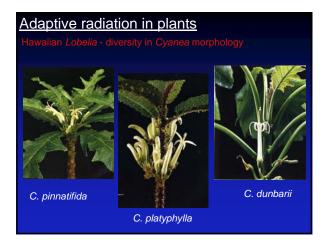
Eg. Hawaiian lobelioids - explosive adaptive radiation in plants.


Colonised Hawaiian islands 8-17 million years ago.


105 species. Pollinated by honeycreepers.


Some plant traits have evolved SINCE the origin of their honeycreeper pollinators.


A full range of flower tubule lengths has evolved on EACH Hawaiian island



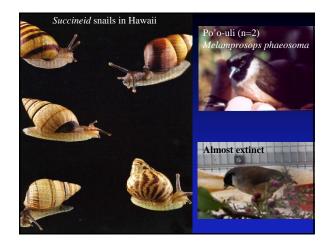












# Endemicity Niche shifts - loss of dispersability - gigantism / nanism - character displacement

## Evolutionary traits of island species Endemicity on islands:

Levels of endemism can be very high...

- ...or very low

Island species often evolve from 'good' dispersers



## Evolutionary traits of island species Loss of dispersability:



## Evolutionary traits of island species Change in size:

Changes in size can occur on islands (no predation, competition for food resources, selection)

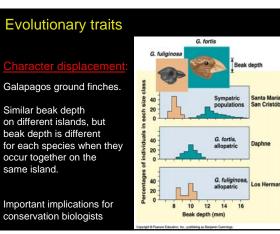
85% of rodent species on islands are larger than mainland ancestors







## Evolutionary traits of island species Change in size:


#### Larger or smaller?

Coloniser arrives on predator-free island

Population density increases on the island

#### Resources become limited

Gigantism Selective pressure for larger body-size through dominance hierarchy (i.e. rodents, lizards) Nanism Selective pressure for smaller body-size as an aggression-reducing strategy (i.e. snakes & some mammals)



## Is extinction an evolutionary trait

of island species?

#### Island colonists must survive:

- 1. environmental fluctuations
- 2. catastrophes
- 3. small [founding] population size
  - Inbreeding depression
  - Loss of genetic variation
  - Fixation of deleterious mutations

Are island species more likely to go extinct

than mainland species?



## Is extinction an evolutionary trait of island species?

Clermontia plants in Hawaii are pollinated only by honeycreepers.

Clermontia peleana is now extinct.

Which extinct honeycreepe served as its pollinator?



